1,387 research outputs found

    Roundabout relaxation: collective excitation requires a detour to equilibrium

    Full text link
    Relaxation to equilibrium after strong and collective excitation is studied, by using a Hamiltonian dynamical system of one dimensional XY model. After an excitation of a domain of KK elements, the excitation is concentrated to fewer elements, which are made farther away from equilibrium, and the excitation intensity increases logarithmically with KK. Equilibrium is reached only after taking this ``roundabout'' route, with the time for relaxation diverging asymptotically as KγK^\gamma with γ≈4.2\gamma \approx 4.2.Comment: 4 pages, 5 figure

    Self-Organized Bottleneck in Energy Relaxation

    Full text link
    We study an energy relaxation process after many degrees of freedom are excited in a Hamiltonian system with a large number of degrees of freedom. Bottlenecks of relaxation, where relaxations of the excited elements are drastically slowed down, are discovered. By defining an internal state for the excited degrees of freedom, it is shown that the drastic slowing down occurs when the internal state is in a critical state. The relaxation dynamics brings the internal state into the critical state, and the critical bottleneck of relaxation is self-organized. Relevance of our result to relaxation phenomena in condensed matters or large molecules is briefly discussed.Comment: 4pages, 5 figure

    Exact Casimir-Polder potentials: interaction of an atom with a conductor-patched dielectric surface

    Get PDF
    We study the interaction between a neutral atom or molecule and a conductor-patched dielectric surface. We model this system by a perfectly reflecting disc lying atop of a non-dispersive dielectric half-space, both interacting with the neutral atom or molecule. We assume the interaction to be non-retarded and at zero temperature. We find an exact solution to this problem. In addition we generate a number of other useful results. For the case of no substrate we obtain the exact formula for the van der Waals interaction energy of an atom near a perfectly conducting disc. We show that the Casimir-Polder force acting on an atom that is polarized in the direction normal to the surface of the disc displays intricate behaviour. This part of our results is directly relevant to recent matter-wave experiments in which cold molecules are scattered by a radially symmetric object in order to study diffraction patterns and the so-called Poisson spot. Furthermore, we give an exact expression for the non-retarded limit of the Casimir-Polder interaction between an atom and a perfectly-conducting bowl.Comment: 9 pages, 9 figure

    Direct Dark Matter Detection with Velocity Distribution in the Eddington approach

    Full text link
    Exotic dark matter together with the vacuum energy (associated with the cosmological constant) seem to dominate the Universe. Thus its direct detection is central to particle physics and cosmology. Supersymmetry provides a natural dark matter candidate, the lightest supersymmetric particle (LSP). One essential ingredient in obtaining the direct detection rates is the density and the velocity distribution of the LSP in our vicinity. In the present paper we study simultaneously density profiles and velocity distributions in the context of the Eddington approach. In such an approach, unlike the commonly assumed Maxwell-Boltzmann (M-B) distribution, the upper bound of the velocity arises naturally from the potential.Comment: 21 LaTex pages, 27 figure

    A Near-Infrared Spectroscopic Study of the Accreting Magnetic White Dwarf SDSS J121209.31+013627.7 and its Substellar Companion

    Get PDF
    The nature of the excess near-infrared emission associated with the magnetic white dwarf commonly known as SDSS 1212 is investigated primarily through spectroscopy, and also via photometry. The inferred low mass secondary in this system has been previously detected by the emission and variation of Hα\alpha, and the 1−2.51-2.5 ÎŒ\mum spectral data presented here are consistent with the presence of a late L or early T dwarf. The excess flux seen beyond 1.5 ÎŒ\mum in the phase-averaged spectrum is adequately modeled with an L8 dwarf substellar companion and cyclotron emission in a 7 MG magnetic field. This interesting system manifests several observational properties typical of polars, and is most likely an old interacting binary with a magnetic white dwarf and a substellar donor in an extended low state.Comment: 28 pages, 5 figures, Accepted to Ap

    Cool Customers in the Stellar Graveyard IV: Spitzer Search for Mid-IR excesses Around Five DAs

    Full text link
    Hydrogen atmosphere white dwarfs with metal lines, so-called DAZs, require external accretion of material to explain the presence of weak metal line absorption in their photospheres. The source of this material is currently unknown, but could come from the interstellar medium, unseen companions, or relic planetesimals from asteroid belt or Kuiper belt analogues. Accurate mid-infrared photometry of these white dwarfs provide additional information to solve the mystery of this accretion and to look for evidence of planetary systems that have survived post main sequence evolution. We present {\em Spitzer} IRAC photometry accurate to ∌\sim3% for four DAZs and one DA with circumstellar absorption lines in the UV. We search for excesses due to unseen companions or circumstellar dust disks. We use {\em Hubble Space Telescope} NICMOS imaging of these white dwarfs to gauge the level of background contamination to our targets as well as rule out common proper motion companions to WD 1620-391. All of our targets show no excesses due to companions >>20 MJ_{J}, ruling out all but very low mass companions to these white dwarfs at all separations. No excesses due to circumstellar disks are observed, and we place limits on what types of disks may still be present.Comment: 18 pages, 8 figures, Accepted to A

    Estimate of blow-up and relaxation time for self-gravitating Brownian particles and bacterial populations

    Full text link
    We determine an asymptotic expression of the blow-up time t_coll for self-gravitating Brownian particles or bacterial populations (chemotaxis) close to the critical point. We show that t_coll=t_{*}(eta-eta_c)^{-1/2} with t_{*}=0.91767702..., where eta represents the inverse temperature (for Brownian particles) or the mass (for bacterial colonies), and eta_c is the critical value of eta above which the system blows up. This result is in perfect agreement with the numerical solution of the Smoluchowski-Poisson system. We also determine the asymptotic expression of the relaxation time close but above the critical temperature and derive a large time asymptotic expansion for the density profile exactly at the critical point

    On the Gravitational Collapse of a Gas Cloud in Presence of Bulk Viscosity

    Full text link
    We analyze the effects induced by the bulk viscosity on the dynamics associated to the extreme gravitational collapse. Aim of the work is to investigate whether the presence of viscous corrections to the evolution of a collapsing gas cloud influence the fragmentation process. To this end we study the dynamics of a uniform and spherically symmetric cloud with corrections due to the negative pressure contribution associated to the bulk viscosity phenomenology. Within the framework of a Newtonian approach (whose range of validity is outlined), we extend to the viscous case either the Lagrangian, either the Eulerian motion of the system and we treat the asymptotic evolution in correspondence to a viscosity coefficient of the form ζ=ζ0ρnu\zeta=\zeta_0 \rho^{nu} (ρ\rho being the cloud density and ζ0=const.\zeta_0=const.). We show how, in the adiabatic-like behavior of the gas (i.e. when the politropic index takes values 4/3<γ≀5/34/3<\gamma\leq5/3), density contrasts acquire, asymptotically, a vanishing behavior which prevents the formation of sub-structures. We can conclude that in the adiabatic-like collapse the top down mechanism of structures formation is suppressed as soon as enough strong viscous effects are taken into account. Such a feature is not present in the isothermal-like (i.e. 1≀γ<4/31\leq\gamma<4/3) collapse because the sub-structures formation is yet present and outlines the same behavior as in the non-viscous case. We emphasize that in the adiabatic-like collapse the bulk viscosity is also responsible for the appearance of a threshold scale beyond which perturbations begin to increase.Comment: 13 pages, no figur

    Self-consistent models of cuspy triaxial galaxies with dark matter haloes

    Get PDF
    We have constructed realistic, self-consistent models of triaxial elliptical galaxies embedded in triaxial dark matter haloes. We examined three different models for the shape of the dark matter halo: (i) the same axis ratios as the luminous matter (0.7:0.86:1); (ii) a more prolate shape (0.5:0.66:1); (iii) a more oblate shape (0.7:0.93:1). The models were obtained by means of the standard orbital superposition technique introduced by Schwarzschild. Self-consistent solutions were found in each of the three cases. Chaotic orbits were found to be important in all of the models,and their presence was shown to imply a possible slow evolution of the shapes of the haloes. Our results demonstrate for the first time that triaxial dark matter haloes can co-exist with triaxial galaxies.Comment: Latex paper based on the AASTEX format, 20 pages, 11 figures, 2 tables. Paper submitted to Ap

    Weyl asymptotics: From closed to open systems

    Full text link
    We present microwave experiments on the symmetry reduced 5-disk billiard studying the transition from a closed to an open system. The measured microwave reflection signal is analyzed by means of the harmonic inversion and the counting function of the resulting resonances is studied. For the closed system this counting function shows the Weyl asymptotic with a leading exponent equal to 2. By opening the system successively this exponent decreases smoothly to an non-integer value. For the open systems the extraction of resonances by the harmonic inversion becomes more challenging and the arising difficulties are discussed. The results can be interpreted as a first experimental indication for the fractal Weyl conjecture for resonances.Comment: 9 pages, 7 figure
    • 

    corecore